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A b s t r a c t  

Green's funct ion equations are considered for interacting spinor and (pseudo)scalar fields 
with interactions gff 'r~ 4~ + ¼X~4. These equations do not  determine higher many-point  
functions if two-point  functions are given as " input ."  If vertex parts are given as input, 
two-point functions are determined but  higher many-point functions are not  determined. 

1. I n t r o d u c t i o n  

In this paper we consider the descending and ascending problems in the 
Green's function approach to quantum field theory formulated in our previous 
paper (Yoshimura, 1975) for interacting spinor and (pseudo)scalar fields with 
interactions 

~a in t  = - -g  f ' ) ' l / /~  - -  ~k~b4 (7 = / o r  7s) 

The main questions are whether one can determine the vertex parts 17 and 
A without resorting to perturbation theory if two-point functions were known 
or substituted by model functions (ascending problem), whether one two- 
point function and one vertex part can be determined if another two-point 
function and another vertex part are given (mixed problem), and whether 
two-point functions can be determined if the vertex parts are given (descend- 
ing problem). For these problems the relevant equations are the following 
Schwinger-Dyson equations: 

[ iTp  - m - g ~G*~b*F~(p)] G(p) = 1 (1 .la) 

[k 2 -  f.t 2 - g  ~vG*r*G~ (k) - X I[~**3.A] (k)]~ (k) = 1 (1.1b) 
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G G ° ~ @  

Figure I. 

where G and 15 are two point functions (in Heisenberg representation) of the 
spinor and (pseudo)scalar fields, respectively, and P and A are the vertex parts 
(See Figure 1). For the meaning of [. • .~ see Appendix. 

In Section 2, we consider the descending problem in the case X = 0. 
In Section 3, we consider the descending problem with X = 0. In Section 4, we 
consider the ascending problem with ?, ~ 0. In Section 5, we consider the 
mixed problem with X ~ O. In Section 6, we consider the descending problem 
with X ~ O. Section 7 is devoted to discussion and remarks. 

2. Ascending Problem in Pure Yukawa Type Theory 

In this Section we consider the question whether one could determine the 
vertex part P(p, q) if one of the two-point functions G or ffi were given and 
ifX = O. 

In this case one can eliminate 15 and write equation (1.1) as follows: 

o(p) -gG°[ (G ° + o)* [({5o)-1_ g~7(G 0 + 0)**2 ,  F ~ ] - 1 ,  F~{(GO)-I 

+ g ~ ( a  ° + o ) .  [ (~o) -1  _ g~,y(ao + 0 ) * * 2 .  p~] - 1 .  p ~ ) - i  - a w l  (p) = 0 

(2.1) 

where G o and 15o are the free propagators. (Symmetrizations are to be made as 
in Figure 1 .) It should be noticed that nonlinearity of equation (2.1) is marginal 
in the sense that the nonlinearity comes from convolutions and the algebraic 
analog of equation (2.1) is linear. 

Now we try to find solutions of this equation in a reflexive Banach space 
of functions of two four-momenta. We define a norm in the Banach space 
as follows: 

I] P [l~ = el sup lF(P, q) f + c2 [fd4pd4q iF(p, q) I K ] 1/~, t~ > 2 (2.2) 

The second term on the right-hand side makes the unit ball in ~3 uniformly 
convex so that reflexivity is guaranteed, which is necessary for the existence 
of the sequence {®n} to be defined below (See Janko, 1968). 

It is convenient to normalize P so as to make P(p, p)[p2= rn ~ = 1 (or 7s), 
i.e., our g corresponds to g:  in more conventional normalization. For a zeroth 
approximation Fo to have a finite norm, Fo(p, q) must behave asymptotically 



341 

o(G°) -t G -1 - g ,~ r ,  Cry *(~i° ~ - 82 I r *  O"/* \(t~jO)_ 1 - g U ' *  G**2V~ 
-=: ZIP] = 0 (2.6) 

where G = G O + o. Let us write P = ~,nOn and try to find Oh as follows: 
The condition to be satisfied by ®0 is 

g~®o*G~*ffj°~=o(G°)-lG -t, IIOoll~=O(g °) (2.78) 

Though we do not have a rigorous proof, we assume that at least one ®o 
satisfying this condition exists in our reflexive (uniformly convex) Banach 
space ~3. Then the next step is to find O1 that satisfies the condition: 

[[(~)1 * G"/,(~jO~ =g~(90 * [O0 * a**2"/~!(l~0) 2 * GTL I! O1 ll~ = O(g) (2.7b) 

Then the condition to be satisfied by (92 is 

+ g~(9o * c a  * ((5°)  2 ~(91 * G** 23'~]] 

and so on. 
Then for sufficiently small g one can expect 

tf P* - P tl = O(g n÷l) (2.8) 

i.e., the procedure converges to a solution of equation (2.1). 
For uniqueness of the solution one has to prove the uniqueness of the 

sequence {On} under reasonable auxiliary conditions such as symmetry under 
permutation of variables, etc. Unfortunately this problem is beyond the scope 

GREEN'S FUNCTION APPROACH TO QUANTUM FIELD THEORY 

as follows: 

Fo(p, q) < c3 [max(p 2 , q2, (p _ q)2)] -K/4 (2.3) 

It should be noticed that for the descending problem to have a solution, 
P(p, q) need not behave like (2.3) but 

F(p,q)~e4 IP21~lq21='~(P-q2)21= 
[ip21+!q21+l(p_q)2112~+t3, a , /3>  0 (2.4) 

(See, Yoshimura, 1975.) 
We define the following norm in the Banach space ~ of candidates for a: 

II o I1¢ = cs sup [o(p) l+ c6 sup I po(p) I + c7 [fd4p [o(p) i u] 1/# (2.5) 

Now we take a a with norm I[ o I[¢ = O(g) as input and try to find a F satisfy- 
ing equation (2.1). For the ascending problem it is more convenient to write 
equation (2.1) in the following form: 
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of the present article. (It is unlikely that P is unique.) Actual search of the 
sequence {On} is a very difficult problem. For the time being we must be 
content with existential arguments. Even if one had solved the descending 
problem with a given F with asymptotic behavior (2.4) and found o, the 
scheme (2.7) does not converge to the original P whatever sequence {On} one 
takes, because the original F is not in the reflexive Banach space ~3. 

What is the situation if t5 is given? In this case one cannot eliminate G and 
consequently one cannot proceed with any presently available methods, 
though solutions may exist. The following question cannot be answered 
either: Can one prove or disprove the existence of l? if both G and (5 are 
arbitrarily given? 

The ascending problems from a given set of G, (5, F are linear. The relevant 
equations are 

p = 3. +g~p**2 ,  G , , 2 7 ,  (5~ +g~.yG**2 *E4~ (2.9a) 

= ~ + g[3,G *.2 * (5 * P] +g[3'G * (5 * ~22 (2.9b) 

with unknown ~4 and ~22, where En and ~2rn are amputated many-point 
functions with n formion buds and with two fermion buds and m boson buds, 
respectively. 

As the equation 

1~7G*.2 " * - '4]  = 0 (2 .10)  

with unknown - '  ~4 has a continuum of  solutions, if a solution of equation (2.9) 
exists, there are infinitely many solutions. 

The main difficulty of the ascending problem is arbitrariness of solutions, 
rather than nonexistence of solutions. The question remaining is whether one 
can impose the unitarity and causality as auxiliary conditions so as to choose 
the solution, or whether those conditions are built into equation (1.1). 

3. Descending Problem with X = 0 

In this Section, we consider the problem of how to determine o if P is 
known or substituted by a model function. The equation to be considered is 
equation (2.1) with given F and unknown o. We write this equation as 
follows: 

( I -  ~ ) [ o ]  - q , [~]  = 0 (3.1)  
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For this equation, the Frechet derivatives are 

• '[o'; o] = z o -  (g~3`o, [((50) -'  -g~3`(O ° + o3 **2 * r~] -~ • r~ 

[ ~o* 3`(G ° + °3 * r~ ) 
+ 292 ~7(G" +'or'), \[((5o)_f ~ 6  +-o-7-~,-~ • F~] ~ 

1 

× • r~} ( (co)  -1 - g~(G ° + o') ,  

x [((50) -1 -g~3`(G ° + o') *.2 * P~] - 1 ,  p~}-2 (3.2) 

• "[e ' ;  ol, 02] = {2g2~o13`* ~o2 *3`(G ° + e ' )*  P~((5°) 2 *F~ + (ox ~ 02) 

-2gZ~3`(G ° + o')* [lea *3'02 * r~ [((5o)-1 

- g~3`(G ° + o') *.2 * F~] - 1 ,  F~ -2g2 [3`02 * ~(G ° + o') 

x * 3'Ol * F~ [((5o)-1 _ g[3`(G 0 + 0,)**2,  p~] -1 , V~ 

--(O1 +'> 0"2)} ' [ (G°)  -1 - g ~ 3 ` ( G  0 + i f ' )  * [ ( (5o) - I  

_ g~3'(a o + 0,)**2 , p ~ ]  - , ,  p~} -2  + O(gS) (3.3) 

so that we have the following estimates when g ~ 1: 

II (~ '  [0;' .] )-111 ~< Bo = O(g °) 

[I ('~' [0;-] )-1 g, [0] It < no = O(g) (3.4) 

II ,I'" [o'; ", -] II < g  = O(g 2) 'go'  E ~ =  [ol 1Iolt < (1  - x/1 ---Z--~o) ho I ] 

ho =- BoKrlo = O(g) <½ 

Therefore the Newton-Kantorovich scheme converges. If one fixes a V such 
that ~3`G *(5 * P~ and ~3`(G°) *.2 * V~ are finite for finite pZ, one finds that 

,r" [0; o] ~ ,  ,I/' [0; o, o'] ~ ~ V o, o' ~ ~ (3.5) 

Some remarks are in order. If a theory has three particle thresholds in the 
self-energy parts, unrenormalised self-energy parts have threshold behavior 
(p2 _ pthr 2 ) v 2  Therefore the renormalization procedure 

p~ p'= 

m r  ~ m r  2 ~,v / d (p t ,2 )2  

must be carried out with use of pseudofunctions, so that the positive definite- 
ness of Im G and Im (5 is violated. As the signs of  lira Re TpG(p) and lim Re k 2 

(5(k 2) are not inverted, the K/ill6n-Lehmann theorem holds but in a weaker sense. 

4. Ascending Problem with X ¢ 0 

For this problem, we begin with the following equations: 

o[(G°) -1 - g~TG *(5* P~] -ga°[[3`a*(5 * l'~ = 0 (4.1) 
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,o [(~o)-1 _ g ~ v G * * 2 r ~  _ M0~**3, A~] 

-g~°~G**2 * P~ - 9~(~° ~ffi**3 * A] = 0 (4.2) 

If G and ff~ are given arbitrarily, equation (4.1) is a linear functional equation 
for I'. By functional equation, we mean an equation that involves an operator 
that maps an unknown function to a function of fewer variables or constants. 
This equation has a continuum of solutions, so let us pick one. Then equation 
(4.2) becomes a linear functional equation for A, so that one cannot deter- 
mine F and A from these equations. The situation is quite similar to that of 
Section 2. 

5. Mixed Problems 

In this section we consider the problem with one self-energy part and one 
vertex part given. 

If G and P are given, equation (4.1) becomes a finear operator equation 
for ff~ and determines ffi, and consequently equation (4.2) becomes a linear 
functional equation for A, which does not determine A uniquely. 

If ffi and P are given, equation (4.1) becomes a nonlinear operator equation 
for G, for which the arguments of Section 3 can be applied, i.e., G is deter- 
mined. Then equation (4.2) becomes a linear functional equation for A, which 
does not determine A uniquely. 

If o and A are given, we cannot say anything because no known scheme is 
applicable. In other words, we cannot tell whether a given pair o, A is com- 
patible. The situation is similar when p and A are given. 

6. Descending Problem with X :/: 0 

Now let us consider how the situation of Section 3 is changed if a ;re 4 
term is present. In this case, one cannot eliminate p from equation (2.1), 
so that one has to deal with the direct product of the Banach space E of 
candidates of a and the Banach space X~ of candidates of p. We define the 
norm in this direct product space E ~ ) ~  as follows: 

[[ (G P) I[ = [I o t[¢ + II P i[~ (6.1a) 

H a 1[¢ = el sup ]pot (p 2) [ + e2 sup [ Ol(p2) [ 

+ ea sup ip2o2(p2) l + e4 sup 1o2@ 2) l 

+ e5 [ fd4p  I o1(p2)I;' ] ~/r, + e6 [ fd4p I offp 2) I~'q 1/~, 

[o(p) = 7po1(p 2) + o2(p2), ~'1 > 4, ~'2 :> 21 (6.1b) 

lip II~ = rtl sup [p2p(p2) I + r/2 sup Ip(p 2) [ 

+ ~73 [fd4P [p(p2)[~,]1/~, (~'3 > 2) (6.1c) 
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Then one can generalize the Newton-Kantorovich scheme as follows: 

RewNte equations (4.1) and (4.2) symbolically 

[I -- ~ ]  [(O, p) T] = 0 (6.2) 

where q~ is a map from ~ ® ~ i n t o  itself, whose explicit form is 

:( + + o ) *  
• [(o, 0) r] \(ao)-1 _ gb,(co + a) .  (~5 ° + p )  • r~'  

((bo)_ 1 _ gl[.r(G o + 0)** 2 • p] _ X[[(No + p)**3A]] (6.3) 

Define the sequence ((ore, Pro)} by the following formula: 

(o.+1,0.+1) T = (on, On) T - (I - H[(on, On);" ] )-1 [I - q~] [(o. ,  On) r ] 
(6.4) 

where H is a supermatrix 

[ H , l  [O',p'] H12[o ' ,p ' ] ]  
, f I , H[(e' ,p ')]  LH~I [ e , p  ] H=2[o,p  ]j  (6.5) 

D . . ( ~ °  + o ' ) .  r~ + [ o') * "v~ Hn[o,p']' =--  g -~P* (ffi° + ,  ~'O(g 2 ) (6.6a) 

H12 [O', p ' ]  =g- ~"/(G° + at) * - *  I~  + ~I ~ * .* (G O + o')"/'~ + O(g2) 

(6.6b) 

//21 [o', 0'1 = 2g~(G° + 0')7 *" * P~ 
((50) -1 - g~v(G ° + o') *.2 * r~ - X[((50 + p,)**3, A~ + o(g2, x 2 ) 

(6.6c) 

3X~((50 + p')**2 . . .  A~ + O(g2, X2 ) 
H22[o', p'] = ((5o)_ 1 _ gj[7(GO + o,) . .2 * p~ _ X[(N o + 0,)**3 * A~ 

(6.6d) 

lp21 ~ lq2t ~ I(p -q)21¢ 
(Ip2 t + Iq21 + I(p - q)2 t)2~+¢, a,/3 > 0 (6.7) 

]Px21q ' 1p221~' [p32 Iv 1091 +p2 - p3) 2 [3' 

If asymptotically 

I P(p, q) [ ~<cl 

tA(pl , p 2 , p 3 , p l  +p2 - p3) [ ~<c~ 
([p12[ + lp22[ + [P32I + ](/O1 +0 2  -- Pa) 2 [)4~,, 

-r > o (6.s) 
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and g '~ 1, X ¢ 1, then 

l i I +  H(0, 0)fl = O(1), 11 [I + H(0, 0)] -1 tl = O(1) 
(6.9) 

II ~5"(0, 0) Jl = O(g 2, ?t 2 , gX), II q'(0, 0)  II --- O(g, X) 

so that the Newton-Kantorovich scheme converges. Because the Lipschitz 
condition 

It n(al,  O1) - n(o2, 02) II < g Ji ( o l ,  01) - (o2 ,  02)  tl V (o im)  ~ S(0, 2to) 
(6.10) 

is satisfied with K = O(g 2, ),5) the solution (o*, p*) is unique in the ball 
S{0, 2ro} where ro is the upper bound of II [I - /4 (0 ,  0)] - 1 ( / _  ~)(o, p)I1: 

II [I-H(O,O)]-I(I  - rb)(o,O) It < t o  V (o,o)ES{O, ro} (6.11) 

This, of course, does not mean that the solution of the descending problem 
is globally unique. On the other hand, it is an interesting feature that the 
vertex parts 17 and A can be given independently. 

7. Concluding Rernarks 

As has been seen above, the main difficulty in the nonperturbative approach 
is the arbitrariness rather than the nonexistence of solutions. One cannot 
ascend to the original F, starting from the a* obtained as a solution to the 
descending problem with a 17 with the asymptotic behavior (2.4), because of 
the lack of reflexivity of the Banach space containing functions with 
asymptotic behavior (2.4). The procedure (2.7) "converges" to a function 
I" within the Banach space ~3, i.e., there are many I" corresponding to a a*. 
This arbitrariness is not surprising. Fixing G and t5 is not sufficient to determine 
a solution of the functional differential equations that generate the equations 
we have to deal with. This can be easily seen if one considers the discrete 
analog of our functional equations. Let us consider the following equations: 

(+ 
O-Xn OXn -1 

( ° o -2~y,+ 
0~+1 ~y.-1 

Then our G and 15 correspond to 

+2 t OXnOX------Z , ~ ( X I  . . . .  , Y l  . . . .  ) x l  . . . . .  Yl . . . . .  O 

and 

O 2 

m ~ - g  f f ( x t , . . . , y a , . . . )  = 0  (7.1a) 

~2 0yn3 ) . - ) - 2 -  g - ~ -  x if(x, . . . . .  y l  . . . .  ) = 0  

(7.1b) 

oy.oy-----~ ~ ( x ,  . . . . .  y l  . . . .  ) ~ . . . . .  y~ . . . . .  o 
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respectively. It is obvious that these quantities are not sufficient to determine 
the solution of equations (7.1). Boundary conditions must be given on a mani- 
fold o f  higher dimensions, not at a single point xl = x2 . . . . .  Yl = y2 . . . . .  0. 
The situation is not much different even if some of the higher derivatives at a 
single point are fixed. The latter situation corresponds to fixing vertex parts 
and]or some higher many-point functions. Moreover equations (7.1) are 
singular at g = 0, X = 0 in the sense that the terms with the highest derivatives 
vanish when g = 0, X = 0. Therefore it is meaningless to try to find a solution 
to equations (7.1) as power series in g and X. 

Another interesting question is whether the functions On must be sym- 
metric under charge conjugation. We do not know the answer to this question, 
unfortunately. 

The above arguments can be repeated for the so-called unrenormalizable 
interactions with minor changes. 

Appendix: Renormalization Procedure 

Though the self-energy parts do not diverge for finite values of momentum 
when I? behaves as (2.3) or (2.4), the self-energy parts ought to be renormatized. 
As is mentioned in our previous paper (Yoshimura, 1975), the conventional re- 
normalization by means of 6m and Z is not suited to our equations, so we 
renormalize by the following substitutions: 

fd4kTG(p - k ) ~  (k)r(p - k, p) 

p2 p'2 d 2 f --" f d(P'2) i d ( P " : ) ~ j  d4k~'G(P" - k)~B(k)r(P"- k'P") 
m 2 m 2 

- l i r a  • ~ • r ~ ( p )  ( A 1 )  

k2 k'~ d2 [r~ k"\ [ k" k"~ 
-+ j ' d ( k  '2) j" d ( k " 2 ) ~ f d 4 k T r , , [ G ~ _ _ - 2 ) p i  p -  -~,P+-~] 

i 2 ~ 

[ k"~ 
x + 5 )  = - • (A2) 

(The * is a shorthand for convolution. For orders of convolutions, one has to 
refer to diagrams.) 

The vertex parts are regularized by the substitutions 

[,,/G**2 , p**2 , ~ 1  _+ D-1D[,yG**2, p * * 2 , ~ ]  

etc., where 
~ 7 G . , 2 .  p * * 2 .  (5~(pl ,p2) (A3) 

D =Piv 3/Opiv (A4) 
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and the operat ion D-1 is to be carried out in such a way that  the resultant 
expressions are equal to zero when p 1 = P2 = 0 (Taylor,  1968). 
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